文章编号: 0253-2239(2009)Supplement 1-0202-05

新型三元系 B_xGa_{1-x}Sb 合金能隙及形成焓的 理论研究

于高¹ 王琦¹ 任晓敏¹ 黄永清¹ 黄 辉¹ 舒 伟¹ 熊德平² (¹北京邮电大学光通信与光波技术教育部重点实验室,北京 100876) ²广东工业大学物理与光电工程学院,广东广州 510006

摘要 基于第一性原理,采用广义梯度近似,理论研究了新型三元系 B_xGa_{1-x}Sb 合金的能带结构,分析了硼(B)的 含量对 B_xGa_{1-x}Sb 合金能带特性的影响。理论计算结果表明,硼相对摩尔含量在 0~18.75%范围内时,B_xGa_{1-x}Sb 的 $\Gamma_{1c} - \Gamma_{15v}$ 带隙宽度值随硼含量单调递增,平均增速为 17.5 meV/%B,其能带弯曲参数为 2.23 eV;其 X_{1c} $- \Gamma_{15v}$ 带隙宽度值随硼含量单调递减,平均减速为 12.8 meV/%B;当 x<10%时,B_xGa_{1-x}Sb 为直接带隙化合物。同时还 计算了硼相对摩尔含量为 6.25%、12.5%和 18.75%时 B_xGa_{1-x}Sb 的形成焓。通过与 B_xGa_{1-x}As 的形成焓对比, 预测 B_xGa_{1-x}Sb 中硼的并入相对摩尔量可达 7%。

关键词 材料;光电子学;BGaSb;第一性原理;能带弯曲参数;形成焓
 中图分类号 O471.5 文献标识码 A doi: 10.3788/AOS200929s1.0202

Theoretical Investigations of the Band-Gap and Formation Enthalpy of New $B_xGa_{1-x}Sb$ Ternary Alloys

Yu Gao¹ Wang Qi¹ Ren Xiaoming¹ Huang Yongqing¹ Huang Hui¹ Shu Wei¹ Xiong Deping²

 ¹ Key Laboratory of Optical Communication and Lightwave Technologies, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
 ² School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China

Abstract Using first-principles calculations with the generalized gradient approximation (GGA), the band structure of the new $B_x Ga_{1-x}$ Sb ternary alloys is studied theoretically, and the impact of the born incorporation on the band structure of $B_x Ga_{1-x}$ Sb is also investigated. The result shows that, when boron relative mole content is between 0 and 18.75%, the value of $\Gamma_{1c} - \Gamma_{15v}$ band-gap energy is increasing monotonously by $\sim 17.5 \text{ meV}/\%$ B with a small band-gap bowing parameter (2.23 eV), while the value of $X_{1c} - \Gamma_{15v}$ band-gap energy is decreasing monotonously by $\sim 12.8 \text{ meV}/\%$ B. When boron content x is below 10%, $B_x Ga_{1-x}$ Sb is a direct band-gap alloy. In addition, the formation enthalpies of $B_x Ga_{1-x}$ Sb alloys with born relative mole content at 6.25%, 12.5% and 18.75% are also calculated, respectively. The comparison between the calculated formation enthalpies of $B_x Ga_{1-x}$ As and that of $B_x Ga_{1-x}$ Sb indicates that the content of boron in $B_x Ga_{1-x}$ Sb may be able to reach 7% relative mole.

Key words materials; optoelectronics; BGaSb; first-principles; band-gap bowing parameter; formation enthalpy

1 引 言

室温下,含锑材料的带隙宽度的在1.43~ 0.1 eV的范围内,对应波长范围为0.9~12 μm,覆 盖了光通信^[1,2]和红外探测领域的波长范围^[1~3],其 应用范围之广,引起了科研工作者们对含锑化合物 研究的极大关注。尤其是基于Ⅲ-V族化合物半导

基金项目:国家 973 计划(2003CB314901)、国家 863 计划(2006AA03Z416, 2007AA03Z418)、国际合作(2006DFB11110)和 高等学校学科创新引智计划(B07005)资助项目。

作者简介:于 高(1984-),男,硕士生,主要从事通信光电子学方面研究。E-mail: yugao0312@qq.com **导师简介:**任晓敏(1958-),男,教授,博士生导师,主要从事通信光电子学方面的研究。E-mail: xmren@bupt.edu.cn

体 GaSb 的三元系、四元系化合物半导体(例如 GaAsSb、AlGaAsSb、GaInAsSb^[4]等),在异质结晶体管(HBT)、红外探测器、红外激光器^[5,6]等器件的制作中得到了广泛的应用。

在常规Ⅲ-V族化合物半导体中掺入硼,会引起 化合物能带性质(例如带隙宽度等)的改变,从而可 能找到新的适合于光通信领域或其他领域的化合物 半导体材料,扩宽相关研究面,并且新材料对提高我 们的器件性能具有积极意义。目前,对于掺硼化合 物的研究大多集中在 BGaAs、BAlAs、BGaInAs 等 少数几种化合物中。而对于在 GaSb 这种常见的 Ⅲ-V族化合物半导体中掺入硼的研究很少,这与现 阶段实验上合成 BGaSb 比较困难有很大关系。

因此,本文从理论计算入手,研究将硼掺入 GaSb中后形成的新型三元系 $B_xGa_{1-x}Sb$ 合金的能 带结构,分析了硼的并入量对 $B_xGa_{1-x}Sb$ 合金能带 特性的影响,并通过与 $B_xGa_{1-x}As$ 的形成焓对比, 预测了 $B_xGa_{1-x}Sb$ 中硼的并入量。这些研究可为 后期实验合成 BGaSb 合金做理论基础。

2 计算方法

计算采用 CASTEP 软件来进行, CASTEP 软件是基于第一性原理的, 它的理论基础是在局域电荷密度近似 (Local Density Approximation,

LDA)^[7,8]或是广义梯度近似 (Generalized Gradient Approximation, GGA)^[9,10]下的电荷密度泛函理 论。与局域密度电荷近似比较,广义梯度近似只改 进了原子交换关联能的计算,对价电子的电离能只 有很小的变化,广义梯度近似采用平面波基矢展开 电子波函数时,仅需较小的截止动能就能达到很好 的收敛效果。

计算中,采用了选用广义梯度近似来处理交换 关联能,在密度泛函的基础上,采用利用平面波赝势 展开方法求解 Kohn-Sham 方程,来计算 BGaSb 的 能带结构和总能量。计算模型采用 32 原子超胞 (supercell)作为周期性基本单元,即用 B_nGa_{16-n}Sb₁₆ (*n*=0,1,…16)来模拟不同硼含量(0,6.25%,… 100%)的三元系 B_xGa_{1-x}Sb 合金,采用团簇法模拟 合金内部原子的随机排列。

3 结果与讨论

3.1 GaSb 与 BSb 的能带结构

在研究 GaSb 及 BSb 的能带性质时,采用 2 原 子的原胞作为模型来计算其能带结构。计算中 BSb 和 GaSb 的晶格常数分别采用 0.512 nm^[11], 0.60959 nm^[18]。图 1 为计算得到的 GaSb 和 BSb 的 能带结构图。

从图 1 可以看出,GaSb 在布里渊区中心处,导带最低点依次为 Γ_{1c} 、 Γ_{15c} ;而在 X 点导带最低点依次为 X_{1c} 、 X_{3c} ,这些都与常见 \square - V 半导体 GaAs、InP 等是一致。BSb 在 Γ 点(对应在布里渊中心)处,其导带最低点为具有三重简并特征的 p 态 Γ_{15c} ,而非大多数 \square - V 族材料那样为 Γ_{1c} ;X 点导带的最低点为导带最低点,这一特性和 Si 材料的性质相同^[13]。

表1和表2分别是 GaSb 和 BSb 对应的 Γ_{1c} - Γ_{15v} 带隙宽度(直接跃迁)和 $X_{1c} - \Gamma_{15v}$ 带隙宽度(间接 跃迁)的一系列计算值和实验值。由于 BSb 尚未在实 验上得到合成,因此暂时也没有关于 BSb 的能隙宽度 的实验值,文中选取 BSb 的 $X_{1c} - \Gamma_{15v}$, $\Gamma_{15c} - \Gamma_{15v}$, $\Gamma_{1c} - \Gamma_{15v}$ 跃迁能隙值为 1.7 ev,4.0 eV,4.4 eV^[13],作 为修正 BGaSb 的直接跃迁能隙值的实验近似值。

Table 1 GaSb's band gaps (theoretical values and

experimental	values)	
--------------	---------	--

		1			
$\Gamma_{1c} - \Gamma_{15v}$	$\Gamma_{15c} - \Gamma_{15v}$	$X_{1c} - \Gamma_{15v}$	$X_{3c} - \Gamma_{15v}$	$L_{1c} - \Gamma_{15v}$	
0.28458	2.97647	1.52598	1.13202	0.6364	$\mathrm{GGA}^{[a]}$
0.812		1.141		0.875	Exp. [b]
		表 2 BSb 能隙 3	宽度的理论计算值		
	1	Table 2 BSb's band g	gaps (theoretical value	es)	
$\Gamma_{1c} - \Gamma_{15v}$	Γ_{15c} – Γ_{15v}	$X_{1c}\!-\!\Gamma_{15v}$	$X_{\rm 3c}\!=\!\Gamma_{\rm 15v}$	$L_{1c}\!-\!\Gamma_{15v}$	
3.79468	3.22406	1.63154	0.84335	2.3557	$\mathrm{GGA}^{[a]}$
	3.05	1.32			$\text{LDA}^{[c]}$
4.4	4.0	1.7			[b]

[a] This work, ^[b] Reference 14, ^[c] Reference 12, ^[d] Reference 13.

3.2 BGaSb 合金的能带结构

对 BGaSb 的计算是基于三元系合金晶格常数 所满足的 Vegard 定理的,即对 $B_xGa_{1-x}Sb$ 合金,其 晶格常数可表示为:

$$a_{\text{BGaSb}} = x \cdot a_{\text{BSb}} + (1-x) \cdot a_{\text{GaSb}}, \qquad (1)$$

其中 a_{BGaSb} 、 a_{BSb} 和 a_{GaSb} 分别表示 BGaSb、BSb 和 GaSb 的晶格常数,通过(1)式计算出不同硼相对摩 尔含量的 B_xGa_{1-x}Sb 的晶胞晶格常数,分别用来建 立各种组分的超胞模型,建立面心立方格子时,采用 准随机结构超胞 SQS-32 近似来模拟原子占位的无 规则性,用 B_nGa_{16-n}Sb₁₆(n=0, 1, ...16),分别代表 在硼原子相对摩尔含量分别为 x=0, 6.25%, 12.5%,...,100%的情形。

由于 32 原子超胞所含的原子数目多,会导致其 能带在空间上的折叠^[15],原胞的间接能谷 X_{1c} 折叠 到超胞能带图中 Γ_{15v} 价带所在的位置,因此计算的 能带图在硼的所有组分都表现为直接跃迁能隙^[16], 它必须通过与二元系原胞能带图的对比来区分直接 和间接跃迁能带。因此在分析 BGaSb 的 32 原子超 胞的能带结构时,就需要参考 3.1 节中的 GaSb 和 BSb 的二原子原胞的能带结构,结合 Γ_{1c} 、 X_{1c} 等点的 走势,就可以区分 Γ_{1c} 、 X_{1c} 等点所处的位置。

由 3.1 节可知 BSb 和 GaSb 的能带结构差别很 大,因此他们构成的三元系合金 B_xGa_{1-x}Sb 的能带 结构会比较复杂。在硼相对摩尔含量 x 比较小的 时候,B_xGa_{1-x}Sb 的能带结构类似于 GaSb,此时能 带最低点为 Γ 处的 Γ_{1c} ,因此 $\Gamma_{1c} - \Gamma_{15v}$ 的带隙宽度 就对应为直接跃迁的最低能隙;而 X 点处最低点为 X_{1c}。计算显示 BGaSb 的导带最低点出现在 Γ 点或 X 点处,当 Γ_{1c} 为导带最低点时,BGaSb 为直接带隙 材料,其带隙宽度值为 $\Gamma_{1c} - \Gamma_{15v}$ 对应的带隙值;当 X_{1c}为导带最低点时,BGaSb 为间接带隙材料,其带 隙宽度值为 X_{1c}-Γ_{15v}对应的带隙值。

表 3~表 5 分别是硼相对摩尔含量为 6.25%、 12.5%、18.75%,不同硼替代位置时,计算得到的直 接跃迁 Γ_{1c}-Γ_{15v}能隙值及对应的权重。

表 3 硼相对摩尔含量为 6.25%时(B₁Ga₁₅Sb₁₆),超胞的 对称性, Γ_{1c} - Γ_{15v}能隙宽度及其权重

Table 3 Symmetry, $\Gamma_{1c} = \Gamma_{15v}$ band gap value and weight of the super-cell (When the boron content is 6.25%,

	$B_1 Ga_{15} Sb_{16}$			
B's position	Symmetry	Weight	$E_{\rm g}({ m eV})$	
(0,0,0)	P-42M	1	0.40882	

表 4 硼相对摩尔含量为 12.5% 时($B_2Ga_{14}Sb_{16}$), 超胞的 对称性, $\Gamma_{1c} - \Gamma_{15v}$ 能隙宽度及其权重

Table 4 Symmetry, $\Gamma_{\rm lc}=\Gamma_{\rm 15v}$ band gap values and weights of the super-cell (When the boron content is

12.5%, B₂Ga₁₄Sb₁₆)

B's position	Symmetry	Weight	$E_{\rm g}({\rm eV})$
(0,0,0)(3/4,3/4,1)	CMM2	4	0.52218
(0,0,0) (3/4,1/2,1/2)	P21212	4	0.53185
(0,0,0)(1/2,1/2,0)	P-4M2	1	0.45834
(0,0,0)(1,1/4,1/2)	P2221	4	0.51114
(0,0,0) $(0,0,1)$	P-42M	2	0.45638
Weighted average of E_{g} :0.5089			

表 5 硼相对摩尔含量为 18.75%时($B_3Ga_{13}Sb_{16}$),超胞的 对称性, $\Gamma_{1c} = \Gamma_{15v}$ 能隙宽度及其权重

Table 5 Symmetry, $\Gamma_{1c} - \Gamma_{15v}$ band gap values and weights of the super-cell (When the boron content is 18,75%, $B_8Ga_{13}Sb_{16}$)

	0 10 5		
B's position	Symmetry	Weight	$E_{\rm g}({\rm eV})$
(0,0,0)(3/4,1/4,0)(1/2,1/4,1/2)) P1	24	0.65269
(0,0,0) (1/2,1/4,1/2)(1/2,3/4,1/	2) P222	13	0.562
(0,0,0) (3/4,1/2,1/2)(1/2,3/4,1/	2) CM	24	0.62914
(0,0,0) $(1/4,3/4,1)(1/2,1/2,1)$	CMM2	8	0.57664
(0,0,0) $(1/4,3/4,1)(3/4,3/4,1)$	P2	33	0.57152
(0,0,0) $(0,0.5,1)(0.5,0.5,1)$	P-42M	3	0.43093
Weigh	ted average	of $E_g:0$. 598438

能带弯曲参数(Energy-gap bowing parameter) 通过下式来定义:

$$E_{g}^{BGaSb} = x \cdot E_{g}^{BSb} + (1-x) \cdot E_{g}^{GaSb} - b(x) \cdot x \cdot (1-x)$$
(2)

其中 E_g^{BSb} 和 E_g^{GaSb} 分别是 BSb 和 GaSb 的 $\Gamma_{1c} - \Gamma_{15v}$ 能隙宽度, E_g^{BGaSb} 是化合物 $B_x Ga_{1-x}$ Sb 带隙宽度。 一般采用广义梯度近似的计算值都比实验值小,这 是密度泛函本身的局限性所致,由于这种偏小对所 有组分都具有一致性,近似认为不影响通过(2)式计 算得到的带隙弯曲参数^[17]。

表 6 所示的是,不同硼相对摩尔含量时直接跃 迁的能隙值($\Gamma_{1c} - \Gamma_{15v}$)以及能带弯曲参数的计算结 果,在 B 相对摩尔含量为 6.25%、12.5%、18.75% 时,对应的能带弯曲参数分别为 1.62 eV、1.96 eV、 2.26 eV。

表 6 $B_x Ga_{1-x}$ Sb 的 $\Gamma_{1c} - \Gamma_{15v}$ 带隙宽度计算值及对应的能带 弯曲参数

Table 6 Calculated $\Gamma_{1c} = \Gamma_{15v}$ band gap values and bowing parameters of $B_x \operatorname{Ga}_{1-x} \operatorname{Sb}$

Composition	X	$E_{\rm g}(x)(\Gamma_{\rm 1c-}\Gamma_{\rm 15v})$	bowing, b / eV
$Ga_{16}Sb_{16}$	0 %	0.28458	
$B_1Ga_{15}Sb_{16}$	6.25%	0.40882	1.623744
$\operatorname{B_2} Ga_{14}\operatorname{Sb}_{16}$	12.5%	0.5089	1.960617
$B_{\!3}Ga_{13}Sb_{16}$	18.75%	0.598438	2.259927
$\mathrm{B}_{16}\mathrm{Sb}_{16}$	100%	3.79468	

为了模拟硼相对摩尔含量在 0-18.75%之间 的 BGaSb 的能带的实际情况,可以采用公式(2),修 正各 组 分 的 BGaSb 的能 隙 值。其中各 组 分 的 B_xGa_{1-x}Sb 能带弯曲参数采用计算值,如表 6 所示, BSb 和 GaSb 的能隙值采用 3.1 节中的值,即 BSb 的 $\Gamma_{1c} - \Gamma_{15v}$ 值用 4.4 eV, X_{1c} $- \Gamma_{15v}$ 值用 1.7 eV, GaSb 的 $\Gamma_{1c} - \Gamma_{15v}$ 值用 0.812 eV, X_{1c} $- \Gamma_{15v}$ 值用 1.141 eV。修正后硼相对摩尔含量为 6.25%、12.5%、 18.75%的 BGaSb 的直接跃迁能隙值分别为 0.941 eV, 1.046 eV 和 1.140 eV,增速分别为:20.64 meV/%B, 16.8 meV/% B, 15.04 meV/%B, 平均增速为 17.5 meV/%B;修正后的 BGaSb 的间接跃迁能隙 值分别为 0.985 eV,0.9172 eV,0.9007 eV,减速分 别 为: 24. 96 meV/% B, 10.848 meV/%B, 2.64 meV/%B,平均减速为12.8 meV/%B。

进行上述补偿后,我们对 $\Gamma_{1c} - \Gamma_{15v}$ 的带隙宽度 值进行了二次拟合,拟合后得到 $B_xGa_{1-x}Sb$ 的直接 跃迁能带弯曲参数为: $b_E_g(\Gamma_{1c} - \Gamma_{15v}) = 2.23 \text{ eV}$ 。 图 2 是修正后的 $B_xGa_{1-x}Sb$ 的带隙宽度和硼相对摩 尔含量的关系图。

Fig. 2 Diagram of the relationship between direct bandgap values and B relative mole contents in ternary alloy B_rGa_{1-r}Sb

从图中可以看到,在硼相对摩尔含量为 0-10. 08%范围内,B_xGa_{1-x}Sb 为直接带隙材料,且其带隙 宽度值小于 1 eV,具有应用于光通信长波长范围的 潜力。另外,计算表明,与 GaAs_xN_{1-x}随着 N 的掺 入的情况不同,BGaSb 随着硼的并入量的增加,其 直接跃迁能隙值是变大的,说明硼并入 GaSb 后,带 来的能带弯曲参数还不够大,不足以使 BGaSb 的带 隙宽度随硼的并入量的增加而降低。

3.3 BGaSb 的形成焓

构成 BGaSb 的两种二元系化合物 BSb 和 GaSb 之间晶格失配常数较大(15%)。从图 3 中,对比 BGaAs 和 InGaAs 的形成焓,可以初步估计,同等条 件下,晶格失配越大,形成焓也越大。形成焓越高意 味着元素原子掺入化合物形成合金的难度越大,它 反应了合金的内应力。如果在形成合金的过程中, 应变不能被化学反应平衡,将会使得系统的总能量 增加,使晶体质量变差。因此形成焓可以用来预测 高质量材料系统的合金组分的可能范围。

三元系 $B_x Ga_{1-x}$ Sb 的形成焓表示为:

 $\Delta H(x) = E_{BGaSb} - [xE_{BSb} + (1-x)E_{GaSb}] (3)$ 其中, $\Delta H(x)$ 为形成焓, E_{BGaSb} 为 BGaSb 的总能量, E_{BSb} 为 BSb 的总能量, E_{GaSb} 为 GaSb 的总能量。本 文计算了硼相对摩尔含量为 6.25%、12.5%和 18. 75%的 BGaSb 的形成焓, 其值分别为 57.62 meV/ atom, 113.66 meV/atom, 163.66 meV/atom。可以 看到,随着硼含量的增加, BGaSb 的形成焓越来越 大,意味着要想并入的硼的含量越大, 合成 BGaSb 的难度将越来越大。

图 3 是关于 BGaSb、BGaAs 和 InGaAs 的形成 焓的对比,从图中可以看到 BGaSb 的形成焓处于

图 3 三元系物 B_xGa_{1-x}Sb 与 B_xGa_{1-x}As、In_xGa_{1-x}As 的 形成焓比较图

Fig. 3 Comparison chart of the formation enthalpies of $B_rGa_{1-x}Sb$, $B_rGa_{1-x}As$ and $In_rGa_{1-x}As$

BGaAs和InGaAs之间。InGaAs的形成焓很低,其 铟含量在0-100%之间时,InGaAs都能存在;而 BGaAs的形成焓很大,对应的硼的并入量也很有 限,目前报道的最高的并入量为7%^[19]。由于形成 焓反应了化合物形成固溶体合金的难易程度,根据 图3的对比,可以估计 BGaSb 中硼的并入量应该可 以达到7%左右。值得注意的是,这种预测的前提 是,认为晶格失配产生的应力是导致晶体质量恶化 的主要原因。

4 结 论

文章采用 32 原子准随机序列模拟了合金内部 实际的无规则排序,并在第一性原理的基础上,采用 广义梯度近似处理电子之间的交换关联能,采用广 义梯度近似,计算了 32 原子结构的 B_xGa_{1-x}Sb 中硼 相对摩尔含量分别为 0,6.25%、12.5%、18.75%、 100%时, $B_xGa_{1-x}Sb$ 的 $\Gamma_{1c} = \Gamma_{15v}$ (直接跃迁)和 X_{1c} $-\Gamma_{15v}$ (间接跃迁)能隙宽度值。随着硼的并入量的 增加,BGaSb 合金的直接跃迁的能隙宽度是变宽 的,在 $x = 0 \sim 6.25\%$, $6.25\% \sim 12.5\%$, $12.5\% \sim$ 18.75%之间,其直接跃迁的能量带隙的增速分别为 20.64 meV/%B,16.8 meV/%B,15.04 meV/%B, 另外,计算了 $B_x Ga_{1-x}$ Sb 的形成焓,在 x = 6.25%, 12.5%,18.75%时,其形成焓分别为0.05762 meV/ atom, 0.11366 meV/atom, 0.16366 meV/atom。随 着硼的并入量的增加,BGaSb的形成焓是增加的, 将 BGaSb 的形成焓与 BGaAs 和 InGaAs 的形成焓

进行对比,预测在 GaSb 中并入硼比较困难,硼的并 入量可达 7% 左右。

参考文献

- 1 Ning Yongqiang, Zhou Tianming, Zhang Badin et al.. Growth and characterization of InAs-rich GaInAsSb alloys on GaSb substrates by MOCVD[J]. J. Cryst. Growth, 1998, 191: 39~ 43
- 2 T. Anan, M. Yamada, K. Nish *et al.*. Continuous-wave operation of 1. 30 μm GaAsSb/GaAs VCSELs [J]. *Electron. Lett.*, 2001, **37**: 566~567
- 3 Werle P. A review of recent advances in semiconductor laser based gas monitor[J]. Spectrochem Acta A, 1998,54(2):197~236
- 4 R. M. Biefeld, J. G. Cederberg, G. M. Peake *et al.*. The growth and characterization of GaInAsSb and AlGaAsSb on GaSb by metal-organic chemical vapor deposition [J]. *J. Cryst. Growth*, 2001, **225**: 384~390
- 5 H. K. Choi, S. J. Eglash, G. W. Turner *et al.*. Doubleheterostructure diode lasers emitting at 3 μm with a metastable GalnAsSb active layer and AlGaAsSb cladding layers[J]. *Appl. Phys. Lett.*, 1994, **64**: 2474~2476
- 6 D. Z. Garbuzov, R. U. Martinelli, R. J. Menna *et al.*. 2. 7- μ m InGaAsSb/AlGaAsSb laser diodes with continuous-wave operation up to -39 C[J]. *Appl. Phys. Lett.*, 1995, **67**: 1346~1348
- 7 Kohn, W. Sham, L. J. Self-consistent equations including exchange and correlation effects[J]. *Phys. Rev. A*, 1965, 140: 1133~1167
- 8 Ziegler, T.. Approximate density functional theory as a practical tool in molecular energetics and dynamics [J]. Chem. Rev., 1991, 91: 651~667
- 9 Juan, Y. M., Kaxiras, E., Gordon, R. G.. Use of the generalized gradient approximation in pseudopotential calculations of solids[J]. *Phys. Rev. B*, 1995, **51**: 9521~9525
- 10 Perdew, J. P.. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. *Phys. Rev. B*, 1986, **33**: 8822~8824
- 11 Ferhat M., Bouhafs B., Zaoui A. et al.. First-principles study of structural and electronic properties of BSb[J]. J. Phys.: Condens. Matter, 1998, 10: 7995~8006
- 12 Bachir Bouhafs, H Aourag and M Certier, Trends in band-gap pressure coefficients in boron compounds BP, BAs, and BSb[J]. J. Phys. Condens. Matter, 2000, 12: 5655~5668
- 13 熊德平.通信光电子半导体材料异质兼容的[D].北京:北京邮 电大学,2007.55~56
- 14 Laurian Escalanti and Gus L. W. Hart, Born alloying in GaN[J]. Appl. Phys. Lett., 2004, 84: 705~707
- 15 R. 霍夫曼. 固体与表面[M]. 北京:化学工业出版社, 1996. 86
- 16 Agrawal B K, Agrawal S, Yadav P S, et al.. Ab intio calculation of electronic properties of Ga_{1-x} Al_xN alloys[J]. J. Phys.Condens Matter, 1997, 9: 1763
- 17 G. L. W. Hart, A. Zunger. Electronic structure of BAs and boride II-V alloys[J]. Phys. Rev. B, 2000, 62: 13522~13537
- 18 Guo Baozeng, Properties, preparation and applications of GaSb [J]. Semicond. Optoelectron., 1999,20
- 19 M. E. Groenert, R. Averbeck, W. H. osler et al.. Optimized growth of BGaAs by molecular beam epitaxy [J]. J. Cryst. Growth, 2004, 264: 123~127